Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105368, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866634

RESUMO

Positive heterotropic cooperativity, or "activation," results in an instantaneous increase in enzyme activity in the absence of an increase in protein expression. Thus, cytochrome P450 (CYP) enzyme activation presents as a potential drug-drug interaction mechanism. It has been demonstrated previously that dapsone activates the CYP2C9-catalyzed oxidation of a number of nonsteroidal anti-inflammatory drugs in vitro. Here, we conducted molecular dynamics simulations (MDS) together with enzyme kinetic investigations and site-directed mutagenesis to elucidate the molecular basis of the activation of CYP2C9-catalyzed S-flurbiprofen 4'-hydroxylation and S-naproxen O-demethylation by dapsone. Supplementation of incubations of recombinant CYP2C9 with dapsone increased the catalytic efficiency of flurbiprofen and naproxen oxidation by 2.3- and 16.5-fold, respectively. MDS demonstrated that activation arises predominantly from aromatic interactions between the substrate, dapsone, and the phenyl rings of Phe114 and Phe476 within a common binding domain of the CYP2C9 active site, rather than involvement of a distinct effector site. Mutagenesis of Phe114 and Phe476 abrogated flurbiprofen and naproxen oxidation, and MDS and kinetic studies with the CYP2C9 mutants further identified a pivotal role of Phe476 in dapsone activation. MDS additionally showed that aromatic stacking interactions between two molecules of naproxen are necessary for binding in a catalytically favorable orientation. In contrast to flurbiprofen and naproxen, dapsone did not activate the 4'-hydroxylation of diclofenac, suggesting that the CYP2C9 active site favors cooperative binding of nonsteroidal anti-inflammatory drugs with a planar or near-planar geometry. More generally, the work confirms the utility of MDS for investigating ligand binding in CYP enzymes.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Citocromo P-450 CYP2C9 , Dapsona , Flurbiprofeno , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Dapsona/metabolismo , Flurbiprofeno/metabolismo , Cinética , Naproxeno/metabolismo , Humanos
2.
Biochem Pharmacol ; 129: 85-95, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28065859

RESUMO

Kinase inhibitors (KIs) are a rapidly expanding class of drugs used primarily for the treatment of cancer. Data relating to the inhibition of UDP-glucuronosyltransferase (UGT) enzymes by KIs is sparse. However, lapatinib (LAP), pazopanib (PAZ), regorafenib (REG) and sorafenib (SOR) have been implicated in the development of hyperbilirubinemia in patients. This study aimed to characterise the role of UGT1A1 inhibition in hyperbilirubinemia and assess the broader potential of these drugs to perpetrate drug-drug interactions arising from UGT enzyme inhibition. Twelve recombinant human UGTs from subfamilies 1A and 2B were screened for inhibition by LAP, PAZ, REG and SOR. IC50 values for the inhibition of all UGT1A enzymes, except UGT1A3 and UGT1A4, by the four KIs were <10µM. LAP, PAZ, REG and SOR inhibited UGT1A1-catalysed bilirubin glucuronidation with mean IC50 values ranging from 34nM (REG) to 3734nM (PAZ). Subsequent kinetic experiments confirmed that REG and SOR were very potent inhibitors of human liver microsomal ß-estradiol glucuronidation, an established surrogate for bilirubin glucuronidation, with mean Ki values of 20 and 33nM, respectively. Ki values for LAP and PAZ were approximately 1- and 2-orders of magnitude higher than those for REG and SOR. REG and SOR were equipotent inhibitors of human liver microsomal UGT1A9 (mean Ki 678nM). REG and SOR are the most potent inhibitors of a human UGT enzyme identified to date. In vitro-in vivo extrapolation indicates that inhibition of UGT1A1 contributes significantly to the hyperbilirubinemia observed in patients treated with REG and SOR, but not with LAP and PAZ. Inhibition of other UGT1A1 substrates in vivo is likely.


Assuntos
Inibidores Enzimáticos/efeitos adversos , Glucuronosiltransferase/antagonistas & inibidores , Hiperbilirrubinemia/induzido quimicamente , Niacinamida/análogos & derivados , Compostos de Fenilureia/efeitos adversos , Piridinas/efeitos adversos , Pirimidinas/efeitos adversos , Quinazolinas/efeitos adversos , Sulfonamidas/efeitos adversos , Bilirrubina/metabolismo , Catálise , Inibidores Enzimáticos/farmacologia , Humanos , Indazóis , Cinética , Lapatinib , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Niacinamida/efeitos adversos , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Sorafenibe , Sulfonamidas/farmacologia
3.
Drug Metab Dispos ; 43(12): 1934-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26443648

RESUMO

Drugs and other chemicals frequently bind nonspecifically to the constituents of an in vitro incubation mixture, particularly the enzyme source [e.g., human liver microsomes (HLM)]. Correction for nonspecific binding (NSB) is essential for the accurate calculation of the kinetic parameters Km, Clint, and Ki. Many tyrosine kinase inhibitors (TKIs) are lipophilic organic bases that are nonionized at physiologic pH. Attempts to measure the NSB of several TKIs to HLM by equilibrium dialysis proved unsuccessful, presumably due to the limited aqueous solubility of these compounds. Thus, the addition of detergents to equilibrium dialysis samples was investigated as an approach to measure the NSB of TKIs. The binding of six validation set nonionized lipophilic bases (felodipine, isradipine, loratidine, midazolam, nifedipine, and pazopanib) to HLM (0.25 mg/ml) was shown to be unaffected by the addition of CHAPS (6 mM) to the dialysis medium. This approach was subsequently applied to measurement of the binding of axitinib, dabrafenib, erlotinib, gefitinib, ibrutinib, lapatinib, nilotinib, nintedanib, regorafenib, sorafenib, and trametinib to HLM (0.25 mg/ml). As with the validation set drugs, attainment of equilibrium was demonstrated in HLM-HLM and buffer-buffer control dialysis experiments. Values of the fraction unbound to HLM ranged from 0.14 (regorafenib and sorafenib) to 0.93 (nintedanib), and were generally consistent with the known physicochemical determinants of drug NSB. The extensive NSB of many TKIs to HLM underscores the importance of correction for TKI binding to HLM and, presumably, other enzyme sources present in in vitro incubation mixtures.


Assuntos
Microssomos Hepáticos/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/metabolismo , Humanos , Indazóis , Niacinamida/análogos & derivados , Niacinamida/química , Niacinamida/metabolismo , Niacinamida/farmacologia , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Compostos de Fenilureia/farmacologia , Ligação Proteica/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/química , Piridinas/metabolismo , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/metabolismo , Pirimidinas/farmacologia , Sorafenibe , Sulfonamidas/química , Sulfonamidas/metabolismo , Sulfonamidas/farmacologia
4.
J Pharmacol Exp Ther ; 349(1): 126-37, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24459244

RESUMO

Morphine 3-ß-D-glucuronide (M3G) and morphine 6-ß-D-glucuronide (M6G) are the major metabolites of morphine in humans. More recently, morphine-3-ß-d-glucoside (M-3-glucoside) was identified in the urine of patients treated with morphine. Kinetic and inhibition studies using human liver microsomes (HLM) and recombinant UGTs as enzyme sources along with molecular modeling were used here to characterize the relationship between morphine glucuronidation and glucosidation. The M3G to M6G intrinsic clearance (C(Lint)) ratio (∼5.5) from HLM supplemented with UDP-glucuronic acid (UDP-GlcUA) alone was consistent with the relative formation of these metabolites in humans. The mean C(Lint) values observed for M-3-glucoside by incubations of HLM with UDP-glucose (UDP-Glc) as cofactor were approximately twice those for M6G formation. However, although the M3G-to-M6G C(Lint) ratio remained close to 5.5 when human liver microsomal kinetic studies were performed in the presence of a 1:1 mixture of cofactors, the mean C(Lint) value for M-3-glucoside formation was less than that of M6G. Studies with UGT enzyme-selective inhibitors and recombinant UGT enzymes, along with effects of BSA on morphine glycosidation kinetics, were consistent with a major role of UGT2B7 in both morphine glucuronidation and glucosidation. Molecular modeling identified key amino acids involved in the binding of UDP-GlcUA and UDP-Glc to UGT2B7. Mutagenesis of these residues abolished morphine glucuronidation and glucosidation. Overall, the data indicate that morphine glucuronidation and glucosidation occur as complementary metabolic pathways catalyzed by a common enzyme (UGT2B7). Glucuronidation is the dominant metabolic pathway because the binding affinity of UDP-GlcUA to UGT2B7 is higher than that of UDP-Glc.


Assuntos
Glucosídeos/metabolismo , Glucuronídeos/metabolismo , Glucuronosiltransferase/metabolismo , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Morfina/metabolismo , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/genética , Células HEK293 , Humanos , Técnicas In Vitro , Cinética , Derivados da Morfina/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...